A Necessary and Sufficient Condition for the Oscillation of Forced Superlinear Second Order Neutral Differential Equations

Author(s):  
H. A. Agwo
Author(s):  
S. J. Bilchev ◽  
M. K. Grammatikopoulos ◽  
I. P. Stavroulakis

AbstractConsider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Huanhuan Zhao ◽  
Youjun Liu ◽  
Jurang Yan

We consider the existence for eventually positive solutions of high-order nonlinear neutral differential equations with distributed delay. We useLebesgue'sdominated convergence theorem to obtain new necessary and sufficient condition for the existence of eventually positive solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jinshu Chen

We aim to investigate the convergence of operators sequences acting on functionals of discrete-time normal martingales M. We first apply the 2D-Fock transform for operators from the testing functional space S(M) to the generalized functional space S⁎(M) and obtain a necessary and sufficient condition for such operators sequences to be strongly convergent. We then discuss the integration of these operator-valued functions. Finally, we apply the results obtained here and establish the existence and uniqueness of solution to quantum stochastic differential equations in terms of operators acting on functionals of discrete-time normal martingales M. And also we prove the continuity and continuous dependence on initial values of the solution.


Author(s):  
R. Datko

SynopsisA necessary and sufficient condition is developed for determination of the uniform stability of a class of non-autonomous linear differential-difference equations. This condition is the analogue of the Liapunov criterion for linear ordinary differential equations.


Sign in / Sign up

Export Citation Format

Share Document